Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 56–58
DOI: https://doi.org/10.31857/S2686954321010112
(Mi danma154)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces

A. M. Savchuk, I. V. Sadovnichaya

Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (127 kB) Citations (1)
References:
Abstract: We study the equiconvergence of spectral decompositions for two Sturm–Liouville operators on the interval $[0,\pi]$ generated by the differential expressions $l_1(y)=-y''+q_1(x)y$ and $l_2=-y''+q_2(x)y$ and the same Birkhoff-regular boundary conditions. The potentials are assumed to be singular in the sense that $q_j(x)=u'_j(x)$, $u_i\in L_\kappa[0,\pi]$ for some $\kappa\in[2,\infty]$ (here, the derivatives are understood in the sense of distributions). It is proved that the equiconvergence in the metric of $L_\nu(0,\pi]$ holds for any function $f\in L_\mu[0,\pi]$ if $\dfrac1\kappa+\dfrac1\mu+\dfrac1\nu\leq1$, $\mu,\nu\in[1,\infty]$, except for the case $\kappa=\nu=\infty$, $\mu=1$.
Keywords: Sturm–Liouville operator, distributional potentials, equiconvergence of spectral decompositions.
Funding agency Grant number
Russian Foundation for Basic Research 19–01–00240
This study was supported by the Russian Foundation for Basic Research, project no. 19-01-00240.
Presented: B. S. Kashin
Received: 18.12.2020
Revised: 28.12.2020
Accepted: 29.12.2020
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 47–49
DOI: https://doi.org/10.1134/S1064562421010117
Bibliographic databases:
Document Type: Article
UDC: 517.984.52
Language: Russian
Citation: A. M. Savchuk, I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for Sturm–Liouville operators with a distributional potential in scales of spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 56–58; Dokl. Math., 103:1 (2021), 47–49
Citation in format AMSBIB
\Bibitem{SavSad21}
\by A.~M.~Savchuk, I.~V.~Sadovnichaya
\paper Equiconvergence of spectral decompositions for Sturm--Liouville operators with a distributional potential in scales of spaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 56--58
\mathnet{http://mi.mathnet.ru/danma154}
\crossref{https://doi.org/10.31857/S2686954321010112}
\zmath{https://zbmath.org/?q=an:7424695}
\elib{https://elibrary.ru/item.asp?id=44829632}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 47--49
\crossref{https://doi.org/10.1134/S1064562421010117}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105535429}
Linking options:
  • https://www.mathnet.ru/eng/danma154
  • https://www.mathnet.ru/eng/danma/v496/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :58
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024