Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 53–55
DOI: https://doi.org/10.31857/S2686954321010094
(Mi danma153)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Problem of determining the anisotropic conductivity in electrodynamic equations

V. G. Romanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
b Mathematical Center in Akademgorodok, Novosibirsk, Russian Federation
Full-text PDF (117 kB) Citations (4)
References:
Abstract: For a system of electrodynamic equations, the inverse problem of determining an anisotropic conductivity is considered. It is supposed that the conductivity is described by a diagonal matrix $\sigma(x)=\operatorname{diag}(\sigma_1(x),\sigma_2(x),\sigma_3(x))$ with $\sigma(x)$ outside of the domain $\Omega=\{x\in\mathbb R^3\mid |x|<R\}$, $R>0$, and the permittivity $\varepsilon$ and the permeability $\mu$ of the medium are positive constants everywhere in $\mathbb R^3$. Plane waves coming from infinity and impinging on an inhomogeneity localized in $\Omega$ are considered. For the determination of the unknown functions $\sigma_1(x),\sigma_2(x),\sigma_3(x)$, information related to the vector of electric intensity is given on the boundary $S$ of the domain $\Omega$. It is shown that this information reduces the inverse problem to three identical problems of X-ray tomography.
Keywords: Maxwell equations, anisotropy, conductivity, plane waves, inverse problem, tomography.
Funding agency Grant number
Mathematical Center in Akademgorodok 075-15-2019-1613
This work was supported by the Mathematical Center in Akademgorodok at Novosibirsk State University (contract no. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation).
Received: 03.11.2020
Revised: 02.12.2020
Accepted: 07.12.2020
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 44–46
DOI: https://doi.org/10.1134/S1064562421010099
Bibliographic databases:
Document Type: Article
UDC: 517.968
Language: Russian
Citation: V. G. Romanov, “Problem of determining the anisotropic conductivity in electrodynamic equations”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 53–55; Dokl. Math., 103:1 (2021), 44–46
Citation in format AMSBIB
\Bibitem{Rom21}
\by V.~G.~Romanov
\paper Problem of determining the anisotropic conductivity in electrodynamic equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 53--55
\mathnet{http://mi.mathnet.ru/danma153}
\crossref{https://doi.org/10.31857/S2686954321010094}
\zmath{https://zbmath.org/?q=an:1478.78037}
\elib{https://elibrary.ru/item.asp?id=44829631}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 44--46
\crossref{https://doi.org/10.1134/S1064562421010099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105099074}
Linking options:
  • https://www.mathnet.ru/eng/danma153
  • https://www.mathnet.ru/eng/danma/v496/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :43
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024