Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 500, Pages 45–51
DOI: https://doi.org/10.31857/S2686954321050088
(Mi danma15)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11

V. P. Platonovab, M. M. Petrunina, Yu. N. Shteinikova

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (154 kB) Citations (2)
References:
Abstract: We solve the problem of describing square-free polynomials $f(x)\in k[x]$ with a periodic expansion of $\sqrt{f(x)}$ into a functional continued fraction in $k((x))$, where $k$ is a number field and the degree of the corresponding fundamental $S$-unit of the hyperelliptic field $k(x)(\sqrt{f(x)})$ is less than or equal to 11.
Keywords: hyperelliptic field, $S$-units, continued fractions, periodicity, torsion points.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0580-2021-0011
This work was performed within the state assignment to basic scientific research, project no. 0580-2021-0011.
Received: 26.08.2021
Revised: 26.08.2021
Accepted: 01.09.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 5, Pages 258–263
DOI: https://doi.org/10.1134/S1064562421050082
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, M. M. Petrunin, Yu. N. Shteinikov, “On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 45–51; Dokl. Math., 104:5 (2021), 258–263
Citation in format AMSBIB
\Bibitem{PlaPetSht21}
\by V.~P.~Platonov, M.~M.~Petrunin, Yu.~N.~Shteinikov
\paper On the periodicity problem for the continued fraction expansion of elements of hyperelliptic fields with fundamental $S$-units of degree at most 11
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 500
\pages 45--51
\mathnet{http://mi.mathnet.ru/danma15}
\crossref{https://doi.org/10.31857/S2686954321050088}
\zmath{https://zbmath.org/?q=an:1482.11096}
\elib{https://elibrary.ru/item.asp?id=47249629}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 5
\pages 258--263
\crossref{https://doi.org/10.1134/S1064562421050082}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124430566}
Linking options:
  • https://www.mathnet.ru/eng/danma15
  • https://www.mathnet.ru/eng/danma/v500/p45
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :15
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024