Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 21–25
DOI: https://doi.org/10.31857/S2686954321010185
(Mi danma147)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Continuous mean periodic extension of functions from an interval

V. V. Volchkov, Vit. V. Volchkov

Donetsk National University, Donetsk, Ukraine
Full-text PDF (268 kB) Citations (1)
References:
Abstract: We study the following version of the mean periodic extension problem.
(i) Suppose that $T\in\mathscr{E}'(\mathbb{R}^n)$, $n\ge2$, and $E$ is a nonempty closed subset of $\mathbb{R}^n$. What conditions guarantee that, for a function $f\in C(E)$, there is a function $F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$ such that $f*T=0$ in $\mathbb{R}^n$?
(ii) If such an extension F exists, then estimate the growth of F at infinity. We present a solution of this problem for a broad class of distributions $T$ in the case when $e$ is an interval in $\mathbb{R}^n$.
Keywords: convolution equations, mean periodicity, spherical transform, quasi-analyticity.
Presented: S. V. Konyagin
Received: 09.01.2021
Revised: 09.01.2021
Accepted: 25.01.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 14–18
DOI: https://doi.org/10.1134/S106456242101018X
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Volchkov, Vit. V. Volchkov, “Continuous mean periodic extension of functions from an interval”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 21–25; Dokl. Math., 103:1 (2021), 14–18
Citation in format AMSBIB
\Bibitem{VolVol21}
\by V.~V.~Volchkov, Vit.~V.~Volchkov
\paper Continuous mean periodic extension of functions from an interval
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 21--25
\mathnet{http://mi.mathnet.ru/danma147}
\crossref{https://doi.org/10.31857/S2686954321010185}
\zmath{https://zbmath.org/?q=an:7424687}
\elib{https://elibrary.ru/item.asp?id=44829624}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 14--18
\crossref{https://doi.org/10.1134/S106456242101018X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105436356}
Linking options:
  • https://www.mathnet.ru/eng/danma147
  • https://www.mathnet.ru/eng/danma/v496/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:130
    Full-text PDF :51
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024