Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 16–20
DOI: https://doi.org/10.31857/S2686954321010173
(Mi danma146)
 

MATHEMATICS

Spectral analysis and solvability of Volterra integro-differential equations

V. V. Vlasov, N. A. Rautian

Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, Moscow, Russian Federation
References:
Abstract: Integro-differential equations with unbounded operator coefficients in a Hilbert space are studied. The equations under consideration are abstract hyperbolic equations perturbed by terms containing Volterra integral operators. These equations are operator models of integro-differential equations with partial derivatives arising in the theory of viscoelasticity, thermal physics, and homogenization problems in multiphase media. The correct solvability of these equations in weighted Sobolev spaces of vector functions is established, and a spectral analysis of the operator functions that are the symbols of these equations is carried out.
Keywords: integro-differential equations, operator function, spectra, Volterra operator.
Funding agency Grant number
Lomonosov Moscow State University
Russian Foundation for Basic Research 20-01-00288
Theorems 1 and 2 were proved under the support of the Interdisciplinary Scientific and Educational School of Moscow State University “Mathematical methods for analysis of complicated systems”. Theorems 3–5 were proved under the support of the Russian Foundation for Basic Research, project no. 20-01-00288.
Presented: V. A. Sadovnichii
Received: 14.12.2020
Revised: 13.01.2021
Accepted: 18.01.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 10–13
DOI: https://doi.org/10.1134/S1064562421010178
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: V. V. Vlasov, N. A. Rautian, “Spectral analysis and solvability of Volterra integro-differential equations”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 16–20; Dokl. Math., 103:1 (2021), 10–13
Citation in format AMSBIB
\Bibitem{VlaRau21}
\by V.~V.~Vlasov, N.~A.~Rautian
\paper Spectral analysis and solvability of Volterra integro-differential equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 16--20
\mathnet{http://mi.mathnet.ru/danma146}
\crossref{https://doi.org/10.31857/S2686954321010173}
\zmath{https://zbmath.org/?q=an:1476.80006}
\elib{https://elibrary.ru/item.asp?id=44829623}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 10--13
\crossref{https://doi.org/10.1134/S1064562421010178}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105373767}
Linking options:
  • https://www.mathnet.ru/eng/danma146
  • https://www.mathnet.ru/eng/danma/v496/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :68
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024