Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 496, Pages 10–15
DOI: https://doi.org/10.31857/S2686954321010161
(Mi danma145)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On oscillation properties of self-adjoint boundary value problems of fourth order

A. A. Vladimirovab, A. A. Shkalikovbc

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
c Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (197 kB) Citations (3)
References:
Abstract: The connection between the number of internal zeros of nontrivial solutions to fourth-order self-adjoint boundary value problems and the inertia index of these problems is studied. We specify the types of problems for which such a connection can be established. In addition, we specify the types of problems for which a connection between the inertia index and the number of internal zeros of the derivatives of nontrivial solutions can be established. Examples demonstrating the effectiveness of the proposed new approach to an oscillatory problem are considered.
Keywords: boundary value problems for ordinary differential equations, spectral and oscillatory problems, inertia index, Kellogg kernels.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00240
This research was supported by the Russian Foundation for Basic Research, grant no. 19-01-00240.
Received: 10.01.2021
Revised: 10.01.2021
Accepted: 19.01.2021
English version:
Doklady Mathematics, 2021, Volume 103, Issue 1, Pages 5–9
DOI: https://doi.org/10.1134/S1064562421010166
Bibliographic databases:
Document Type: Article
UDC: 517.927+517.984
Language: Russian
Citation: A. A. Vladimirov, A. A. Shkalikov, “On oscillation properties of self-adjoint boundary value problems of fourth order”, Dokl. RAN. Math. Inf. Proc. Upr., 496 (2021), 10–15; Dokl. Math., 103:1 (2021), 5–9
Citation in format AMSBIB
\Bibitem{VlaShk21}
\by A.~A.~Vladimirov, A.~A.~Shkalikov
\paper On oscillation properties of self-adjoint boundary value problems of fourth order
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 496
\pages 10--15
\mathnet{http://mi.mathnet.ru/danma145}
\crossref{https://doi.org/10.31857/S2686954321010161}
\zmath{https://zbmath.org/?q=an:7424685}
\elib{https://elibrary.ru/item.asp?id=44829622}
\transl
\jour Dokl. Math.
\yr 2021
\vol 103
\issue 1
\pages 5--9
\crossref{https://doi.org/10.1134/S1064562421010166}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102241832}
Linking options:
  • https://www.mathnet.ru/eng/danma145
  • https://www.mathnet.ru/eng/danma/v496/p10
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :89
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024