Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 495, Pages 78–81
DOI: https://doi.org/10.31857/S2686954320060089
(Mi danma139)
 

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

On the period length of a functional continued fraction over a number field

G. V. Fedorov

Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (172 kB) Citations (6)
References:
Abstract: In the classical case, the connection between the periodicity of the continued fraction of $\sqrt{f}$ and the existence of a fundamental unit of the corresponding hyperelliptic field $\mathscr{L}=K(x)(\sqrt{f})$, where $K$ is a field of characteristic different from 2, has long been known. For the element $\sqrt{f}$, the period length of the continued fraction in $K((1/x))$ can be trivially estimated from above by the doubled degree of the fundamental unit. Much more complicated and interesting is the problem of estimating (from above) the period length of other elements of $\mathscr{L}$ that have a periodic continued fraction. Among these elements, those of the form $\sqrt{f}/x^s$, $s\in\mathbb{Z}$, play a key role. For such elements, the period length can be many times greater than the double degree of the fundamental unit. In this article, we find upper bounds for the period length of key elements of hyperelliptic fields $\mathscr{L}$ over number fields $K$. An example is found that demonstrates the sharpness of the proven upper bounds.
Keywords: continued fraction, period length, fundamental unit, hyperelliptic field, cyclotomic polynomials, Eisenstein criterion.
Funding agency Grant number
Russian Science Foundation 19–71–00029
This work was supported by the Russian Science Foundation, project no. 19-71-00029.
Presented: V. P. Platonov
Received: 09.10.2020
Revised: 09.10.2020
Accepted: 14.10.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 3, Pages 513–517
DOI: https://doi.org/10.1134/S1064562420060101
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: G. V. Fedorov, “On the period length of a functional continued fraction over a number field”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 78–81; Dokl. Math., 102:3 (2020), 513–517
Citation in format AMSBIB
\Bibitem{Fed20}
\by G.~V.~Fedorov
\paper On the period length of a functional continued fraction over a number field
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 78--81
\mathnet{http://mi.mathnet.ru/danma139}
\crossref{https://doi.org/10.31857/S2686954320060089}
\zmath{https://zbmath.org/?q=an:1476.11016}
\elib{https://elibrary.ru/item.asp?id=44367208}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 513--517
\crossref{https://doi.org/10.1134/S1064562420060101}
Linking options:
  • https://www.mathnet.ru/eng/danma139
  • https://www.mathnet.ru/eng/danma/v495/p78
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :32
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024