Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 495, Pages 59–64
DOI: https://doi.org/10.31857/S2686954320060235
(Mi danma135)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case

A. V. Podolskii, T. A. Shaposhnikova

Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (178 kB) Citations (5)
References:
Abstract: The present paper is devoted to the study of the asymptotic behavior of the optimal control for the boundary value problem in an $\varepsilon$-periodically perforated domain with linear Robin-type boundary condition, when the period of the structure tends to zero, and the problem parameters, diameter of perforations and adsorption coefficient, take critical values.
Keywords: homogenization, perforated domain, critical case, optimal control, “strange” term.
Presented: V. V. Kozlov
Received: 05.10.2020
Revised: 02.11.2020
Accepted: 05.11.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 3, Pages 497–501
DOI: https://doi.org/10.1134/S1064562420060253
Bibliographic databases:
Document Type: Article
UDC: 517.956.223
Language: Russian
Citation: A. V. Podolskii, T. A. Shaposhnikova, “Optimal control and “strange” term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 59–64; Dokl. Math., 102:3 (2020), 497–501
Citation in format AMSBIB
\Bibitem{PodSha20}
\by A.~V.~Podolskii, T.~A.~Shaposhnikova
\paper Optimal control and ``strange'' term arising from homogenization of the Poisson equation in the perforated domain with the Robin-type boundary condition in the critical case
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 59--64
\mathnet{http://mi.mathnet.ru/danma135}
\crossref{https://doi.org/10.31857/S2686954320060235}
\zmath{https://zbmath.org/?q=an:1479.35252}
\elib{https://elibrary.ru/item.asp?id=44367203}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 497--501
\crossref{https://doi.org/10.1134/S1064562420060253}
Linking options:
  • https://www.mathnet.ru/eng/danma135
  • https://www.mathnet.ru/eng/danma/v495/p59
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024