Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 495, Pages 55–58
DOI: https://doi.org/10.31857/S2686954320060120
(Mi danma134)
 

MATHEMATICS

Concentrations problem for solutions to compressible Navier–Stokes equations

P. I. Plotnikovab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
b Voronezh State University, Voronezh, Russian Federation
References:
Abstract: A three-dimensional initial-boundary value problem for the isentropic equations of the dynamics of a viscous gas is considered. The concentration phenomenon is that, for adiabatic exponent values $\gamma\le3/2$, the finite energy can be concentrated on arbitrarily small sets. It is proved that, in the critical case $\gamma=3/2$, the norm of the density of kinetic energy in the logarithmic Orlicz space is bounded by a constant that depends only on the initial and boundary data. This eliminates the possibility of the concentration phenomenon.
Keywords: Navier–Stokes equations, viscous gas, concentration phenomenon.
Funding agency Grant number
Russian Science Foundation 19–11–00146
This work was supported by the Russian Science Foundation, project no. 19-11-00146.
Received: 31.08.2020
Revised: 31.08.2020
Accepted: 12.09.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 3, Pages 493–496
DOI: https://doi.org/10.1134/S1064562420060149
Bibliographic databases:
Document Type: Article
UDC: 539.375
Language: Russian
Citation: P. I. Plotnikov, “Concentrations problem for solutions to compressible Navier–Stokes equations”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 55–58; Dokl. Math., 102:3 (2020), 493–496
Citation in format AMSBIB
\Bibitem{Plo20}
\by P.~I.~Plotnikov
\paper Concentrations problem for solutions to compressible Navier--Stokes equations
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 55--58
\mathnet{http://mi.mathnet.ru/danma134}
\crossref{https://doi.org/10.31857/S2686954320060120}
\zmath{https://zbmath.org/?q=an:1477.35132}
\elib{https://elibrary.ru/item.asp?id=44367202}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 493--496
\crossref{https://doi.org/10.1134/S1064562420060149}
Linking options:
  • https://www.mathnet.ru/eng/danma134
  • https://www.mathnet.ru/eng/danma/v495/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:113
    Full-text PDF :40
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024