Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 495, Pages 38–43
DOI: https://doi.org/10.31857/S2686954320060223
(Mi danma132)
 

MATHEMATICS

On moment methods in Krylov subspaces

V. P. Il'inab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
References:
Abstract: Moment methods in Krylov subspaces for solving symmetric systems of linear algebraic equations (SLAEs) are considered. A family of iterative algorithms is proposed based on generalized Lanczos orthogonalization with an initial vector $v^0$ chosen regardless of the initial residual. By applying this approach, a series of SLAEs with the same matrix, but with different right-hand sides can be solved using a single set of basis vectors. Additionally, it is possible to implement generalized moment methods that reduce to block Krylov algorithms using a set of linearly independent guess vectors $v^0,\dots,v^0_m$. The performance of algorithm implementations is improved by reducing the number of matrix multiplications and applying efficient parallelization of vector operations. It is shown that the applicability of moment methods can be extended using preconditioning to various classes of algebraic systems: indefinite, incompatible, asymmetric, and complex, including non-Hermitian ones.
Keywords: moment method, Krylov subspace, parametric Lanczos orthogonalization, conjugate direction algorithms.
Funding agency Grant number
Russian Foundation for Basic Research 18–01–00295
This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00295.
Presented: E. E. Tyrtyshnikov
Received: 02.06.2020
Revised: 02.06.2020
Accepted: 11.11.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 3, Pages 478–482
DOI: https://doi.org/10.1134/S1064562420060241
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. P. Il'in, “On moment methods in Krylov subspaces”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 38–43; Dokl. Math., 102:3 (2020), 478–482
Citation in format AMSBIB
\Bibitem{Ili20}
\by V.~P.~Il'in
\paper On moment methods in Krylov subspaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 38--43
\mathnet{http://mi.mathnet.ru/danma132}
\crossref{https://doi.org/10.31857/S2686954320060223}
\zmath{https://zbmath.org/?q=an:7424670}
\elib{https://elibrary.ru/item.asp?id=44367199}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 478--482
\crossref{https://doi.org/10.1134/S1064562420060241}
Linking options:
  • https://www.mathnet.ru/eng/danma132
  • https://www.mathnet.ru/eng/danma/v495/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :41
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024