|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
Orthogonal elements in nonseparable rearrangement invariant spaces
S. V. Astashkina, E. M. Semenovb a Samara National Research University, Samara, Russian Federation
b Voronezh State University, Voronezh, Russian Federation
Abstract:
Let $E$ be a nonseparable rearrangement invariant space, and let $E_0$ denote the closure of the set of all bounded functions in $E$. We study elements of $E$ orthogonal to the subspace $E_0$, i.e., elements $x\in E$ such that $\|x\|_E\le\|x+y\|_E$ for any $y\in E_0$.
Keywords:
nonseparable Banach space, rearrangement invariant space, Orlicz space, Marcinkiewicz space, orthogonal elements.
Citation:
S. V. Astashkin, E. M. Semenov, “Orthogonal elements in nonseparable rearrangement invariant spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 5–7; Dokl. Math., 102:3 (2020), 449–450
Linking options:
https://www.mathnet.ru/eng/danma126 https://www.mathnet.ru/eng/danma/v495/p5
|
Statistics & downloads: |
Abstract page: | 106 | Full-text PDF : | 41 | References: | 15 |
|