|
This article is cited in 8 scientific papers (total in 8 papers)
MATHEMATICS
Arithmetic properties of Euler-type series with a Liouvillian polyadic parameter
V. G. Chirskii Lomonosov Moscow State University, Moscow, Russian Federation
Abstract:
This paper states that, for any nonzero linear form $h_0f_0(1)+h_1f_1(1)$ with integer coefficients $h_0,h_1$, there exist infinitely many $p$-adic fields where this form does not vanish. Here, $f_0(1)=\sum\limits_{n=0}^\infty (\lambda)_n$, $f_1(1)=\sum\limits_{n=0}^\infty(\lambda+1)_n$, $\lambda$ where $\lambda$ is a Liouvillian polyadic number and $(\lambda)_n$ stands for the Pochhammer symbol. This result shows the possibility of studying the arithmetic properties of values of hypergeometric series with transcendental parameters.
Keywords:
infinite linear independence, polyadic numbers, Hermite–Padé approximations.
Citation:
V. G. Chirskii, “Arithmetic properties of Euler-type series with a Liouvillian polyadic parameter”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 68–70; Dokl. Math., 102:2 (2020), 412–413
Linking options:
https://www.mathnet.ru/eng/danma119 https://www.mathnet.ru/eng/danma/v494/p68
|
Statistics & downloads: |
Abstract page: | 103 | Full-text PDF : | 35 | References: | 22 |
|