Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 494, Pages 17–20
DOI: https://doi.org/10.31857/S2686954320050458
(Mi danma109)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Two-stage method for solving systems of nonlinear equations and its applications to the inverse atmospheric sounding problem

V. V. Vasinab, G. G. Skorikab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russian Federation
Full-text PDF (124 kB) Citations (1)
References:
Abstract: For an overdetermined system of nonlinear equations, a two-stage method is suggested for constructing an error-stable approximate solution. The first stage consists in constructing a regularized set of approximate solutions for finding normal quasi-solutions of the original system. At the second stage, the regularized quasi-solutions are approximated using an iterative process based on square approximation of the Tikhonov functional and a prox-method. For this Newton-type method, a convergence theorem is proved and the Fejér property of the iterations is established. Additionally, the two-stage method is applied to the inverse problem of reconstructing heavy water (HDO) in the atmosphere from infrared spectra of solar light transmission.
Keywords: nonlinear system, regularization, iterative process, infrared spectrum, atmospheric remote sounding, HDO retrieval.
Funding agency Grant number
Russian Science Foundation 18–11–00024
Vasin acknowledges the support of the Russian Science Foundation, project no. 18-11-00024.
Received: 04.06.2020
Revised: 04.06.2020
Accepted: 16.07.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 2, Pages 367–370
DOI: https://doi.org/10.1134/S1064562420050439
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: V. V. Vasin, G. G. Skorik, “Two-stage method for solving systems of nonlinear equations and its applications to the inverse atmospheric sounding problem”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 17–20; Dokl. Math., 102:2 (2020), 367–370
Citation in format AMSBIB
\Bibitem{VasSko20}
\by V.~V.~Vasin, G.~G.~Skorik
\paper Two-stage method for solving systems of nonlinear equations and its applications to the inverse atmospheric sounding problem
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 494
\pages 17--20
\mathnet{http://mi.mathnet.ru/danma109}
\crossref{https://doi.org/10.31857/S2686954320050458}
\zmath{https://zbmath.org/?q=an:7424642}
\elib{https://elibrary.ru/item.asp?id=44344640}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 2
\pages 367--370
\crossref{https://doi.org/10.1134/S1064562420050439}
Linking options:
  • https://www.mathnet.ru/eng/danma109
  • https://www.mathnet.ru/eng/danma/v494/p17
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :57
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024