Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 104–107
DOI: https://doi.org/10.31857/S2686954320040165
(Mi danma104)
 

This article is cited in 3 scientific papers (total in 3 papers)

CONTROL PROCESSES

Asymptotic efficiency of maximum entropy estimates

Yu. S. Popkovab

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russian Federation
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (135 kB) Citations (3)
References:
Abstract: The problem of entropy estimation of probability density functions with allowance for real data is posed (the maximum entropy estimation (MEE) problem). Global existence conditions for the implicit dependence of Lagrange multipliers on data collection are obtained. The asymptotic efficiency of maximum entropy estimates is proved.
Keywords: entropy estimation, density functions, Lagrange multipliers, vector field rotation, asymptotic efficiency.
Funding agency Grant number
Russian Foundation for Basic Research 20–07–00470
This study was supported by the Russian Foundation for Basic Research, project no. 20-07-00470.
Received: 06.04.2020
Revised: 11.05.2020
Accepted: 23.05.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 350–352
DOI: https://doi.org/10.1134/S106456242004016X
Bibliographic databases:
Document Type: Article
UDC: 51-7
Language: Russian
Citation: Yu. S. Popkov, “Asymptotic efficiency of maximum entropy estimates”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 104–107; Dokl. Math., 102:1 (2020), 350–352
Citation in format AMSBIB
\Bibitem{Pop20}
\by Yu.~S.~Popkov
\paper Asymptotic efficiency of maximum entropy estimates
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 104--107
\mathnet{http://mi.mathnet.ru/danma104}
\crossref{https://doi.org/10.31857/S2686954320040165}
\zmath{https://zbmath.org/?q=an:1477.62025}
\elib{https://elibrary.ru/item.asp?id=43795356}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 350--352
\crossref{https://doi.org/10.1134/S106456242004016X}
Linking options:
  • https://www.mathnet.ru/eng/danma104
  • https://www.mathnet.ru/eng/danma/v493/p104
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :31
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024