|
This article is cited in 3 scientific papers (total in 3 papers)
CONTROL PROCESSES
Asymptotic efficiency of maximum entropy estimates
Yu. S. Popkovab a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russian Federation
b V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
Abstract:
The problem of entropy estimation of probability density functions with allowance for real data is posed (the maximum entropy estimation (MEE) problem). Global existence conditions for the implicit dependence of Lagrange multipliers on data collection are obtained. The asymptotic efficiency of maximum entropy estimates is proved.
Keywords:
entropy estimation, density functions, Lagrange multipliers, vector field rotation, asymptotic efficiency.
Received: 06.04.2020 Revised: 11.05.2020 Accepted: 23.05.2020
Citation:
Yu. S. Popkov, “Asymptotic efficiency of maximum entropy estimates”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 104–107; Dokl. Math., 102:1 (2020), 350–352
Linking options:
https://www.mathnet.ru/eng/danma104 https://www.mathnet.ru/eng/danma/v493/p104
|
Statistics & downloads: |
Abstract page: | 96 | Full-text PDF : | 31 | References: | 22 |
|