Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 99–103
DOI: https://doi.org/10.31857/S2686954320040104
(Mi danma103)
 

This article is cited in 1 scientific paper (total in 1 paper)

CONTROL PROCESSES

Contact geometry in optimal control of thermodynamic processes for gases

A. G. Kushnerab, V. V. Lychaginc, M. Roopac

a Lomonosov Moscow State University, Moscow, Russian Federation
b Moscow Pedagogical University, Moscow, Russian Federation, Moscow, Russian Federation
c V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (212 kB) Citations (1)
References:
Abstract: We solve an optimal control problem for thermodynamic processes in an ideal gas. The thermodynamic state is given by a Legendrian manifold in a contact space. Pontryagin’s maximum principle is used to find an optimal trajectory (thermodynamic process) on this manifold that maximizes the work of the gas. In the case of ideal gases, it is shown that the corresponding Hamiltonian system is completely integrable and its quadrature-based solution is given.
Keywords: contact geometry, thermodynamics, optimal control, Hamiltonian systems, integrability.
Funding agency Grant number
Russian Foundation for Basic Research 18–29–10013
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS 19-7-1-13-3
Kushner acknowledges the partial support from the Russian Foundation for Basic Research (project no. 18-29-10013), while Lychagin and Roop acknowledge the partial support from the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (project no. 19-7-1-13-3).
Presented: S. N. Vassilyev
Received: 27.03.2020
Revised: 14.04.2020
Accepted: 06.06.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 346–349
DOI: https://doi.org/10.1134/S1064562420040109
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. G. Kushner, V. V. Lychagin, M. Roop, “Contact geometry in optimal control of thermodynamic processes for gases”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 99–103; Dokl. Math., 102:1 (2020), 346–349
Citation in format AMSBIB
\Bibitem{KusLycRoo20}
\by A.~G.~Kushner, V.~V.~Lychagin, M.~Roop
\paper Contact geometry in optimal control of thermodynamic processes for gases
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 99--103
\mathnet{http://mi.mathnet.ru/danma103}
\crossref{https://doi.org/10.31857/S2686954320040104}
\zmath{https://zbmath.org/?q=an:7424625}
\elib{https://elibrary.ru/item.asp?id=43795355}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 346--349
\crossref{https://doi.org/10.1134/S1064562420040109}
Linking options:
  • https://www.mathnet.ru/eng/danma103
  • https://www.mathnet.ru/eng/danma/v493/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :51
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024