|
This article is cited in 2 scientific papers (total in 2 papers)
MATHEMATICS
On alternating quasipositive links
S. Yu. Orevkovabc a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b L'université Paul Sabatier, Toulouse, France
c Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия
Abstract:
An effectively verifiable condition for quasipositivity of links is given. In particular, it is proven that if a quasipositive link can be represented by an alternating diagram satisfying the condition that no pair of Seifert circles is connected by a single crossing, then the diagram is positive and the link is strongly quasipositive.
Keywords:
quasipositive link, alternating link, Seifert circles.
Citation:
S. Yu. Orevkov, “On alternating quasipositive links”, Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 56–59; Dokl. Math., 102:2 (2020), 403–405
Linking options:
https://www.mathnet.ru/eng/danma10 https://www.mathnet.ru/eng/danma/v494/p56
|
Statistics & downloads: |
Abstract page: | 80 | Full-text PDF : | 34 | References: | 11 |
|