Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 58–61
DOI: https://doi.org/10.31857/S2686954320030157
(Mi danma1)
 

MATHEMATICS

Rings of integers in number fields and root lattices

V. L. Popovab, Yu. G. Zarhinc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Национальный исследовательский университет “Высшая школа экономики”, Москва, Россия
c Department of Mathematics, Pennsylvania State University, University Park, USA
References:
Abstract: This paper investigates whether a root lattice can be similar to the lattice $\mathscr{O}$ of all integer elements of a number field $K$ endowed with the inner product $(x,y):=\operatorname{Trace}_{K/\mathbb{Q}}(x\cdot\theta(y))$, where $\theta$ is an involution of the field $K$. For each of the following three properties (1), (2), (3), a classification of all the pairs $K$, $\theta$ with this property is obtained: (1) $\mathscr{O}$ is a root lattice; (2) $\mathscr{O}$ is similar to an even root lattice; (3) $\mathscr{O}$ is similar to the lattice $\mathbb{Z}^{[K:\mathbb{Q}]}$. The necessary conditions for similarity of $\mathscr{O}$ to a root lattice of other types are also obtained. It is proved that $\mathscr{O}$ cannot be similar to a positive definite even unimodular lattice of rank $\le48$, in particular, to the Leech lattice.
Keywords: number field, ring of integers, root lattice.
Funding agency Grant number
Simons Foundation 585711
Yu.G. Zarhin did the work with partial support of the Simons Foundation Collaboration grant no. 585711.
Received: 20.03.2020
Revised: 20.03.2020
Accepted: 24.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 221–223
DOI: https://doi.org/10.1134/S1064562420030151
Bibliographic databases:
Document Type: Article
UDC: 511.231
Language: Russian
Citation: V. L. Popov, Yu. G. Zarhin, “Rings of integers in number fields and root lattices”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 58–61; Dokl. Math., 101:3 (2020), 221–223
Citation in format AMSBIB
\Bibitem{PopZar20}
\by V.~L.~Popov, Yu.~G.~Zarhin
\paper Rings of integers in number fields and root lattices
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 58--61
\mathnet{http://mi.mathnet.ru/danma1}
\crossref{https://doi.org/10.31857/S2686954320030157}
\zmath{https://zbmath.org/?q=an:7424593}
\elib{https://elibrary.ru/item.asp?id=42930005}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 221--223
\crossref{https://doi.org/10.1134/S1064562420030151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000568010300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090791062}
Linking options:
  • https://www.mathnet.ru/eng/danma1
  • https://www.mathnet.ru/eng/danma/v492/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024