Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1983, Volume 273, Number 4, Pages 789–793 (Mi dan9851)  

This article is cited in 10 scientific papers (total in 10 papers)

MATHEMATICS

Necessary and sufficient conditions for being a basis in $L_{p}$ and equiconvergence with a trigonometric series of spectral expansions and expansions in systems of exponentials

V. A. Il'in

Lomonosov Moscow State University
Presented: A. N. Tikhonov
Received: 11.03.1983
Bibliographic databases:
Document Type: Article
UDC: 517.927.25+517.5
Language: Russian
Citation: V. A. Il'in, “Necessary and sufficient conditions for being a basis in $L_{p}$ and equiconvergence with a trigonometric series of spectral expansions and expansions in systems of exponentials”, Dokl. Akad. Nauk SSSR, 273:4 (1983), 789–793
Citation in format AMSBIB
\Bibitem{Ili83}
\by V.~A.~Il'in
\paper Necessary and sufficient conditions for being a basis in $L_{p}$
and equiconvergence with a trigonometric series of spectral expansions
and expansions in systems of exponentials
\jour Dokl. Akad. Nauk SSSR
\yr 1983
\vol 273
\issue 4
\pages 789--793
\mathnet{http://mi.mathnet.ru/dan9851}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=728273}
\zmath{https://zbmath.org/?q=an:0545.34022}
Linking options:
  • https://www.mathnet.ru/eng/dan9851
  • https://www.mathnet.ru/eng/dan/v273/i4/p789
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024