Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1984, Volume 274, Number 6, Pages 1326–1329 (Mi dan9777)  

THEORY OF ELASTICITY

On a possible method of approach to the solution of the biharmonic equation $\Delta^{2}w=\Phi$ under different boundary conditions at the boundary of a plane or spatial domain

G. A. Grinberg

Ioffe Physico-Technical Institute USSR Academy of Sciences, Leningrad
Received: 16.05.1983
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: G. A. Grinberg, “On a possible method of approach to the solution of the biharmonic equation $\Delta^{2}w=\Phi$ under different boundary conditions at the boundary of a plane or spatial domain”, Dokl. Akad. Nauk SSSR, 274:6 (1984), 1326–1329
Citation in format AMSBIB
\Bibitem{Gri84}
\by G.~A.~Grinberg
\paper On a possible method of approach to the solution of the biharmonic equation $\Delta^{2}w=\Phi$ under different boundary conditions at the boundary of a plane or spatial domain
\jour Dokl. Akad. Nauk SSSR
\yr 1984
\vol 274
\issue 6
\pages 1326--1329
\mathnet{http://mi.mathnet.ru/dan9777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=740448}
\zmath{https://zbmath.org/?q=an:0597.73005}
Linking options:
  • https://www.mathnet.ru/eng/dan9777
  • https://www.mathnet.ru/eng/dan/v274/i6/p1326
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024