Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1988, Volume 299, Number 4, Pages 809–811 (Mi dan7695)  

MATHEMATICS

Necessary conditions for the property of being a basis in $L_2(G)$ for a system of eigen- and associated functions of a second-order differential operator

N. B. Kerimov

S. M. Kirov Azerbaidzhan State University, Baku
Presented: A. N. Tikhonov
Received: 16.09.1986
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: Russian
Citation: N. B. Kerimov, “Necessary conditions for the property of being a basis in $L_2(G)$ for a system of eigen- and associated functions of a second-order differential operator”, Dokl. Akad. Nauk SSSR, 299:4 (1988), 809–811; Dokl. Math., 37:2 (1988), 468–470
Citation in format AMSBIB
\Bibitem{Ker88}
\by N.~B.~Kerimov
\paper Necessary conditions for the property of being a basis in $L_2(G)$ for a system of eigen- and associated functions of a second-order
differential operator
\jour Dokl. Akad. Nauk SSSR
\yr 1988
\vol 299
\issue 4
\pages 809--811
\mathnet{http://mi.mathnet.ru/dan7695}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=943737}
\zmath{https://zbmath.org/?q=an:0699.34026}
\transl
\jour Dokl. Math.
\yr 1988
\vol 37
\issue 2
\pages 468--470
Linking options:
  • https://www.mathnet.ru/eng/dan7695
  • https://www.mathnet.ru/eng/dan/v299/i4/p809
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024