Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1989, Volume 306, Number 4, Pages 785–788 (Mi dan7099)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Regularization of Volterra operator equations of the first kind with a boundedly Lipschitz-continuous kernel

S. I. Kabanikhin

Institute of Mathematics, Siberian Branch of USSR Academy of Sciences, Novosibirsk
Full-text PDF (200 kB) Citations (1)
Presented: M. M. Lavrent'ev
Received: 04.01.1988
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: S. I. Kabanikhin, “Regularization of Volterra operator equations of the first kind with a boundedly Lipschitz-continuous kernel”, Dokl. Akad. Nauk SSSR, 306:4 (1989), 785–788; Dokl. Math., 39:3 (1989), 549–552
Citation in format AMSBIB
\Bibitem{Kab89}
\by S.~I.~Kabanikhin
\paper Regularization of Volterra operator equations of the first kind with a boundedly Lipschitz-continuous kernel
\jour Dokl. Akad. Nauk SSSR
\yr 1989
\vol 306
\issue 4
\pages 785--788
\mathnet{http://mi.mathnet.ru/dan7099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1014744}
\zmath{https://zbmath.org/?q=an:0688.45003}
\transl
\jour Dokl. Math.
\yr 1989
\vol 39
\issue 3
\pages 549--552
Linking options:
  • https://www.mathnet.ru/eng/dan7099
  • https://www.mathnet.ru/eng/dan/v306/i4/p785
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025