Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk, 1994, Volume 336, Number 1, Pages 46–49 (Mi dan49700)  

MECHANICS

A stochastic approach to the description of processes in “weakly” mixed multiphase media. The “wandering” wave model

V. E. Alemasovab, M. H. Brenermanab, A. R. Kesselab, J. I. Kravtsovab

a Zavoisky Physical Technical Institute, Kazan Scientific Center of the Russian Academy of Sciences
b Department of Energy, Kazan Scientific Center Russian Academy of Sciences
Received: 09.11.1993
Bibliographic databases:
Document Type: Article
UDC: 532.5
Language: Russian
Citation: V. E. Alemasov, M. H. Brenerman, A. R. Kessel, J. I. Kravtsov, “A stochastic approach to the description of processes in “weakly” mixed multiphase media. The “wandering” wave model”, Dokl. Akad. Nauk, 336:1 (1994), 46–49; Dokl. Math., 39:5 (1994), 374–377
Citation in format AMSBIB
\Bibitem{AleBreKes94}
\by V.~E.~Alemasov, M.~H.~Brenerman, A.~R.~Kessel, J.~I.~Kravtsov
\paper A stochastic approach to the description of processes in ``weakly'' mixed multiphase media. The ``wandering'' wave model
\jour Dokl. Akad. Nauk
\yr 1994
\vol 336
\issue 1
\pages 46--49
\mathnet{http://mi.mathnet.ru/dan49700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1283460}
\transl
\jour Dokl. Math.
\yr 1994
\vol 39
\issue 5
\pages 374--377
Linking options:
  • https://www.mathnet.ru/eng/dan49700
  • https://www.mathnet.ru/eng/dan/v336/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024