Doklady Akademii Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk, 2018, Volume 483, Number 6, Pages 609–613
DOI: https://doi.org/10.31857/S086956520003431-7
(Mi dan46857)
 

This article is cited in 9 scientific papers (total in 10 papers)

On the Finiteness of Hyperelliptic Fields with Special Properties and Periodic Expansion of $\sqrt f$

V. P. Platonov, M. M. Petrunin, V. S. Zhgoon, Yu. N. Shteinikov

Scientific Research Institute for System Studies of RAS, Moscow
Citations (10)
Abstract: We prove the finiteness of the set of square-free polynomials $f \in k[x]$ of odd degree distinct from 11 considered up to a natural equivalence relation for which the continued fraction expansion of the irrationality $\sqrt{f(x)}$ in $k((x))$ is periodic and the corresponding hyperelliptic field $k(x)(\sqrt f)$ contains an $S$-unit of degree 11. Moreover, it was proved for $k = \mathbb{Q}$ that there are no polynomials of odd degree distinct from 9 and 11 satisfying the conditions mentioned above.
Funding agency Grant number
Russian Science Foundation 16-11-10111
Received: 26.12.2018
English version:
Doklady Mathematics, 2018, Volume 98, Issue 3, Pages 641–645
DOI: https://doi.org/10.1134/S1064562418070281
Bibliographic databases:
Document Type: Article
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/dan46857
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:136
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024