|
MATHEMATICS
A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field
I. M. Gel'fanda, M. I. Graeva, M. Zyskinb a Scientific Research Institute for System Studies of RAS, Moscow
b Rutgers, The State University of New Jersey, USA
Citation:
I. M. Gel'fand, M. I. Graev, M. Zyskin, “A problem of integral geometry on $K^3$ connected with harmonic analysis on the group $SL(2,K)$, where $K$ is an arbitrary continuous locally compact field”, Dokl. Akad. Nauk, 352:1 (1997), 15–17
Linking options:
https://www.mathnet.ru/eng/dan3899 https://www.mathnet.ru/eng/dan/v352/i1/p15
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 72 | References: | 1 |
|