Doklady Akademii Nauk SSSR
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. Akad. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Akademii Nauk SSSR, 1971, Volume 200, Number 3, Pages 534–537 (Mi dan36428)  

This article is cited in 3 scientific papers (total in 4 papers)

MATHEMATICS

On the regularity of generalized solutions of the equation $\det(\partial^2u/\partial x^i\partial x^j)=\varphi(x^1,x^2,\dots,x^n)>0$

A. V. Pogorelov

Physical Engineering Institute of Low Temperatures, UkrSSR Academy of Sciences, Khar'kov
Full-text PDF (558 kB) Citations (4)
Received: 17.05.1971
Bibliographic databases:
Document Type: Article
UDC: 513.731
Language: Russian
Citation: A. V. Pogorelov, “On the regularity of generalized solutions of the equation $\det(\partial^2u/\partial x^i\partial x^j)=\varphi(x^1,x^2,\dots,x^n)>0$”, Dokl. Akad. Nauk SSSR, 200:3 (1971), 534–537
Citation in format AMSBIB
\Bibitem{Pog71}
\by A.~V.~Pogorelov
\paper On the regularity of generalized solutions of the equation
$\det(\partial^2u/\partial x^i\partial x^j)=\varphi(x^1,x^2,\dots,x^n)>0$
\jour Dokl. Akad. Nauk SSSR
\yr 1971
\vol 200
\issue 3
\pages 534--537
\mathnet{http://mi.mathnet.ru/dan36428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0293227}
\zmath{https://zbmath.org/?q=an:0246.35014}
Linking options:
  • https://www.mathnet.ru/eng/dan36428
  • https://www.mathnet.ru/eng/dan/v200/i3/p534
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024