Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 3, Pages 88–108
DOI: https://doi.org/10.33048/daio.2020.27.680
(Mi da958)
 

This article is cited in 1 scientific paper (total in 1 paper)

$2$-Approximation algorithms for two graph clustering problems

V. P. Il'evab, S. D. Il'evaa, A. V. Morshininb

a Dostoevsky Omsk State University, 55a Mira Avenue, 644077 Omsk, Russia
b Omsk Branch of Sobolev Institute of Mathematics, 13 Pevtsov Street, 644043 Omsk, Russia
Full-text PDF (346 kB) Citations (1)
References:
Abstract: We study a version of the graph $2$-clustering problem and the related semi-supervised problem. In these problems, given an undirected graph, we have to find a nearest $2$-cluster graph, i. e. a graph on the same vertex set with exactly two nonempty connected components each of which is a complete graph. The distance between two graphs is the number of noncoinciding edges. The problems under consideration are NP-hard. In 2008, Coleman, Saunderson, and Wirth presented a polynomial time $2$-approximation algorithm for the analogous problem in which the number of clusters does not exceed $2$. Unfortunately, the method of proving the performance guarantee of the Coleman, Saunderson, and Wirth algorithm is inappropriate for the graph $2$-clustering problem in which the number of clusters equals $2$. We propose a polynomial time $2$-approximation algorithm for the $2$-clustering problem on an arbitrary graph. In contrast to the proof by Coleman, Saunderson, and Wirth, our proof of the performance guarantee of this algorithm does not use switchings. Moreover, we propose an analogous $2$-approximation algorithm for the related semi-supervised problem. Bibliogr. 9.
Keywords: graph, clustering, NP-hard problem, approximation algorithm, guaranteed approximation ratio.
Received: 10.01.2020
Revised: 06.05.2020
Accepted: 25.05.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 490–502
DOI: https://doi.org/10.1134/S1990478920030084
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: V. P. Il'ev, S. D. Il'eva, A. V. Morshinin, “$2$-Approximation algorithms for two graph clustering problems”, Diskretn. Anal. Issled. Oper., 27:3 (2020), 88–108; J. Appl. Industr. Math., 14:3 (2020), 490–502
Citation in format AMSBIB
\Bibitem{IleIleMor20}
\by V.~P.~Il'ev, S.~D.~Il'eva, A.~V.~Morshinin
\paper $2$-Approximation algorithms for~two~graph~clustering~problems
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 3
\pages 88--108
\mathnet{http://mi.mathnet.ru/da958}
\crossref{https://doi.org/10.33048/daio.2020.27.680}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 490--502
\crossref{https://doi.org/10.1134/S1990478920030084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094631947}
Linking options:
  • https://www.mathnet.ru/eng/da958
  • https://www.mathnet.ru/eng/da/v27/i3/p88
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :104
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024