Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 3, Pages 53–70
DOI: https://doi.org/10.33048/daio.2020.27.681
(Mi da956)
 

On a routing Open Shop Problem on two nodes with unit processing times

M. O. Golovacheva, A. V. Pyatkinba

a Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Koptyug Avenue, 630090 Novosibirsk, Russia
References:
Abstract: The routing Open Shop Problem deals with $n$ jobs located in the nodes of an edge-weighted graph $G=(V,E)$ and $m$ machines that are initially in a special node called depot. The machines must process all jobs in arbitrary order so that each machine processes at most one job at any one time and each job is processed by at most one machine at any one time. The goal is to minimize the makespan; i. e., the time when the last machine returns to the depot. This problem is known to be NP-hard even for the two machines and the graph containing only two nodes. In this article we consider the particular case of the problem with a $2$-node graph, unit processing time of each job, and unit travel time between every two nodes. The conjecture is made that the problem is polynomially solvable in this case; i. e., the makespan depends only on the number of machines and the loads of the nodes and can be calculated in time $O(\log mn)$. We provide some new bounds on the makespan in the case of $m = n$ depending on the loads distribution. Tab. 2, bibliogr. 15.
Keywords: routing Open Shop Problem, unit processing time, complexity, scheduling, polynomial time, makespan bound.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0314-2019-0014
Russian Foundation for Basic Research 20-01-00045
This research is supported by the Program for Fundamental Scientific Research of SB RAS (Project 0314–2019–0014) and Russian Foundation for Basic Research (Project 20–01–00045).
Received: 10.01.2020
Revised: 20.04.2020
Accepted: 25.05.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 470–479
DOI: https://doi.org/10.1134/S1990478920030060
Bibliographic databases:
Document Type: Article
UDC: 519.854.2
Language: Russian
Citation: M. O. Golovachev, A. V. Pyatkin, “On a routing Open Shop Problem on two nodes with unit processing times”, Diskretn. Anal. Issled. Oper., 27:3 (2020), 53–70; J. Appl. Industr. Math., 14:3 (2020), 470–479
Citation in format AMSBIB
\Bibitem{GolPya20}
\by M.~O.~Golovachev, A.~V.~Pyatkin
\paper On a routing Open Shop Problem on two nodes with unit processing times
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 3
\pages 53--70
\mathnet{http://mi.mathnet.ru/da956}
\crossref{https://doi.org/10.33048/daio.2020.27.681}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 470--479
\crossref{https://doi.org/10.1134/S1990478920030060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094654990}
Linking options:
  • https://www.mathnet.ru/eng/da956
  • https://www.mathnet.ru/eng/da/v27/i3/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :67
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024