Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 3, Pages 28–52
DOI: https://doi.org/10.33048/daio.2020.27.677
(Mi da955)
 

A polynomial algorithm with asymptotic ratio $2/3$ for the asymmetric maximization version of the $m$-PSP

A. N. Glebovab, S. G. Toktokhoevab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
References:
Abstract: In 2005, Kaplan et al. presented a polynomial-time algorithm with guaranteed approximation ratio $2/3$ for the maximization version of the asymmetric TSP. In 2014, Glebov, Skretneva, and Zambalaeva constructed a similar algorithm with approximation ratio $2/3$ and cubic runtime for the maximization version of the asymmetric $2$-PSP ($2$-APSP-max), where it is required to find two edge-disjoint Hamiltonian cycles of maximum total weight in a complete directed weighted graph. The goal of this paper is to construct a similar algorithm for the more general $m$-APSP-max in the asymmetric case and justify an approximation ratio for this algorithm that tends to $2/3$ as $n$ grows and the runtime complexity estimate $O(mn^3)$. Illustr. 2, bibliogr. 29.
Keywords: Hamiltonian cycle, Traveling Salesman Problem, $m$-Peripatetic Salesman Problem, approximation algorithm, guaranteed approximation ratio.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00747
18-01-00353
This research is supported by the Russian Foundation for Basic Research (Projects 18–01–00353, 18–01–00747).
Received: 02.12.2019
Revised: 09.05.2020
Accepted: 25.05.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 3, Pages 456–469
DOI: https://doi.org/10.1134/S1990478920030079
Document Type: Article
UDC: 519.8
Language: Russian
Citation: A. N. Glebov, S. G. Toktokhoeva, “A polynomial algorithm with asymptotic ratio $2/3$ for the asymmetric maximization version of the $m$-PSP”, Diskretn. Anal. Issled. Oper., 27:3 (2020), 28–52; J. Appl. Industr. Math., 14:3 (2020), 456–469
Citation in format AMSBIB
\Bibitem{GleTok20}
\by A.~N.~Glebov, S.~G.~Toktokhoeva
\paper A polynomial algorithm with~asymptotic ratio~$2/3$ for~the~asymmetric maximization version of~the~$m$-PSP
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 3
\pages 28--52
\mathnet{http://mi.mathnet.ru/da955}
\crossref{https://doi.org/10.33048/daio.2020.27.677}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 3
\pages 456--469
\crossref{https://doi.org/10.1134/S1990478920030079}
Linking options:
  • https://www.mathnet.ru/eng/da955
  • https://www.mathnet.ru/eng/da/v27/i3/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :145
    References:21
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024