Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 2, Pages 117–135
DOI: https://doi.org/10.33048/daio.2020.27.670
(Mi da953)
 

This article is cited in 3 scientific papers (total in 3 papers)

Exact formula for exponents of mixing digraphs for register transformations

V. M. Fomichevabcd, Ya. E. Avezovab

a Financial University under the Government of Russian Federation, 49 Leningradskii Avenue, 125993 Moscow, Russia
b National Research Nuclear University MEPhI, 31 Kashirskoe Highway, 115409 Moscow, Russia
c Institute of Informatics Problems of FRC CSC RAS, 44 Bld. 2 Vavilov Street, 119333 Moscow, Russia
d Security Code LLC, 10 Bld. 1 Pervyi Nagatinskii Driveway, 115230 Moscow, Russia
Full-text PDF (364 kB) Citations (3)
References:
Abstract: A digraph is primitive if some positive degree of it is a complete digraph, i. e. has all possible edges. The least degree of this kind is called the exponent of the digraph. Given a primitive digraph, the elementary local exponent for some vertices $u$ and $v$ is the least positive integer $\gamma$ such that there exists a path from $u$ to $v$ of every length at least $\gamma$. For transformation on the binary $n$-dimensional vector space that is given by a set of $n$ coordinate functions, the $n$ vertex digraph corresponds such that a pair $(u,v)$ is an edge if the $v$th coordinate component of transformation essentially depends on $u$th variable. Such a digraph we call a mixing digraph of transformation.
We study the mixing digraphs of widely used in cryptography $n$-bit shift registers with nonlinear Boolean feedback function (NFSR), $n>1$. We find the exact formulas for the exponent and elementary local exponents for $n$-vertex primitive mixing digraph associated to NFSR. For pseudo-random sequences generators based on the NFSRs, our results can be applied to evaluate the length of blank run. Bibliogr. 20.
Keywords: mixing digraph, primitive digraph, locally primitive digraph, feedback shift register, exponent of a digraph.
Received: 06.09.2019
Revised: 27.09.2019
Accepted: 19.02.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 2, Pages 308–319
DOI: https://doi.org/10.1134/S199047892002009X
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. M. Fomichev, Ya. E. Avezova, “Exact formula for exponents of mixing digraphs for register transformations”, Diskretn. Anal. Issled. Oper., 27:2 (2020), 117–135; J. Appl. Industr. Math., 14:2 (2020), 308–319
Citation in format AMSBIB
\Bibitem{FomAve20}
\by V.~M.~Fomichev, Ya.~E.~Avezova
\paper Exact formula for exponents of mixing digraphs~for~register~transformations
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 2
\pages 117--135
\mathnet{http://mi.mathnet.ru/da953}
\crossref{https://doi.org/10.33048/daio.2020.27.670}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 2
\pages 308--319
\crossref{https://doi.org/10.1134/S199047892002009X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087778841}
Linking options:
  • https://www.mathnet.ru/eng/da953
  • https://www.mathnet.ru/eng/da/v27/i2/p117
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :63
    References:27
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024