Abstract:
We consider linear codes in a space over a finite field
with the Hamming metric. A code is called pseudolinear
if it is the image of a linear code under an isometric transformation of the space.
We derive an upper bound (q−2)M/q attainable for q⩾3 for the size of the intersection
of two different pseudolinear codes of the same size M. Bibliogr. 10.
This research is supported by the Russian Foundation for Basic Research
(Project 19–01–00682) and the Programme for Fundamental Scientific Research
of SB RAS No. I.5.1 (Project 0314–2019–0016)
Citation:
S. V. Avgustinovich, E. V. Gorkunov, “Maximum intersection of linear codes and codes equivalent to linear”, Diskretn. Anal. Issled. Oper., 26:4 (2019), 5–15
\Bibitem{AvgGor19}
\by S.~V.~Avgustinovich, E.~V.~Gorkunov
\paper Maximum intersection of linear codes and~codes~equivalent to~linear
\jour Diskretn. Anal. Issled. Oper.
\yr 2019
\vol 26
\issue 4
\pages 5--15
\mathnet{http://mi.mathnet.ru/da934}
\crossref{https://doi.org/10.33048/daio.2019.26.669}
Linking options:
https://www.mathnet.ru/eng/da934
https://www.mathnet.ru/eng/da/v26/i4/p5
This publication is cited in the following 1 articles:
Evgeny V. Gorkunov, Vitaly R. Danilko, 2019 XVI International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), 2019, 47