Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2019, Volume 26, Issue 3, Pages 115–140
DOI: https://doi.org/10.33048/daio.2019.26.640
(Mi da933)
 

On the minimization of Boolean functions for additive complexity measures

I. P. Chukhrov

Institute of Computer Aided Design RAS, 19/18 Vtoraya Brestskaya Street, 123056 Moscow, Russia
References:
Abstract: The problem of minimizing Boolean functions for additive complexity measures in a geometric interpretation, as covering a subset of vertices in the unit cube by faces, is a special type of a combinatorial statement of the weighted problem of a minimal covering of a set. Its specificity is determined by the family of covering subsets, the faces of the unit cube, that are contained in the set of the unit vertices of the function, as well as by the complexity measure of the faces, which determines the weight of the faces when calculating the complexity of the covering. To measure the complexity, we need nonnegativity, monotonicity in the inclusion of faces, and equality for isomorphic faces. For additive complexity measures, we introduce a classification in accordance with the order of the growth of the complexity of the faces depending on the dimension of the cube and study the characteristics of the complexity of the minimization of almost all Boolean functions. Bibliogr. 11.
Keywords: face of a Boolean cube, face complex, Boolean function, complexity measure, minimal face complex.
Received: 23.11.2018
Revised: 14.05.2019
Accepted: 05.06.2019
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 3, Pages 418–435
DOI: https://doi.org/10.1134/S1990478919030049
Bibliographic databases:
Document Type: Article
UDC: 519.714.7
Language: Russian
Citation: I. P. Chukhrov, “On the minimization of Boolean functions for additive complexity measures”, Diskretn. Anal. Issled. Oper., 26:3 (2019), 115–140; J. Appl. Industr. Math., 13:3 (2019), 418–435
Citation in format AMSBIB
\Bibitem{Chu19}
\by I.~P.~Chukhrov
\paper On the minimization of Boolean functions for~additive complexity measures
\jour Diskretn. Anal. Issled. Oper.
\yr 2019
\vol 26
\issue 3
\pages 115--140
\mathnet{http://mi.mathnet.ru/da933}
\crossref{https://doi.org/10.33048/daio.2019.26.640}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 3
\pages 418--435
\crossref{https://doi.org/10.1134/S1990478919030049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071434256}
Linking options:
  • https://www.mathnet.ru/eng/da933
  • https://www.mathnet.ru/eng/da/v26/i3/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :36
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024