Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2019, Volume 26, Issue 3, Pages 60–87
DOI: https://doi.org/10.33048/daio.2019.26.661
(Mi da931)
 

This article is cited in 3 scientific papers (total in 3 papers)

The branch and cut method for the clique partitioning problem

R. Yu. Simanchevab, I. V. Urazovab, Yu. A. Kochetovc

a Omsk Scientific Center SB RAN, 15 Karl Marx Avenue, 644024 Omsk, Russia
b Dostoevsky Omsk State University, 55A Mir Avenue, 644077 Omsk, Russia
c Sobolev Institute of Mathematics, 4 Akad. Koptyug Avenue, Novosibirsk, 630090, Russia
Full-text PDF (457 kB) Citations (3)
References:
Abstract: A numerical study is carried out of the branch and cut method adapted for solving the clique partitioning problem (CPP). The problem is to find a family of pairwise disjoint cliques with minimum total weight in a complete edge-weighted graph. The two particular cases of the CPP are considered: The first is known as the aggregating binary relations problem (ABRP), and the second is the graph approximation problem (GAP). For the previously known class of facet inequalities of the polytope of the problem, the cutting-plane algorithm is developed. This algorithm includes the two new basic elements: finding a solution with given guaranteed accuracy and a local search procedure to solve the problem of inequality identification. The proposed cutting-plane algorithm is used to construct lower bounds in the branch and cut method. Some special heuristics are used to search upper bounds for the exact solution. We perform a numerical experiment on randomly generated graphs. Our method makes it possible to find an optimal solution for the previously studied cases of the ABRP and for new problems of large dimension. The GAP turns out to be a more complicated case of the CPP in the computational aspect. Moreover, some simple and difficult classes of the GAPs are identified for our algorithm. Tab. 5, illustr. 1, bibliogr. 32.
Keywords: branch and cut, facet inequality, local search.
Funding agency Grant number
Russian Foundation for Basic Research 18-07-00599_а
This research is supported by the Russian Foundation for Basic Research (Project 18–07–00599).
Received: 29.05.2018
Revised: 04.06.2019
Accepted: 05.06.2019
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 3, Pages 539–556
DOI: https://doi.org/10.1134/S1990478919030153
Bibliographic databases:
Document Type: Article
UDC: 519.1+519.8
Language: Russian
Citation: R. Yu. Simanchev, I. V. Urazova, Yu. A. Kochetov, “The branch and cut method for the clique partitioning problem”, Diskretn. Anal. Issled. Oper., 26:3 (2019), 60–87; J. Appl. Industr. Math., 13:3 (2019), 539–556
Citation in format AMSBIB
\Bibitem{SimUraKoc19}
\by R.~Yu.~Simanchev, I.~V.~Urazova, Yu.~A.~Kochetov
\paper The branch and cut method for~the~clique~partitioning~problem
\jour Diskretn. Anal. Issled. Oper.
\yr 2019
\vol 26
\issue 3
\pages 60--87
\mathnet{http://mi.mathnet.ru/da931}
\crossref{https://doi.org/10.33048/daio.2019.26.661}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 3
\pages 539--556
\crossref{https://doi.org/10.1134/S1990478919030153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071477729}
Linking options:
  • https://www.mathnet.ru/eng/da931
  • https://www.mathnet.ru/eng/da/v26/i3/p60
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025