|
Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals
A. A. Sapozhenko, V. G. Sargsyan Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
Abstract:
A collection $(A_1,\dots,A_{k+l})$ of subsets of an interval $[1,n]$ of naturals is called $(k,l)$-solution-free if there is no set $(a_1,\dots,$ $a_{k+l})\in A_1\times\dots\times A_{k+l}$ that is a solution to the equation $x_1+\dots+x_k=x_{k+1}+\dots+x_{k+l}$. We obtain the asymptotics for the logarithm of the number of sets $(k,l)$-free of solutions in an interval $[1,n]$ of naturals. Bibliogr. 17.
Keywords:
set, group, coset, characteristic function, progression.
Received: 20.02.2018 Revised: 10.12.2018 Accepted: 27.02.2019
Citation:
A. A. Sapozhenko, V. G. Sargsyan, “Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals”, Diskretn. Anal. Issled. Oper., 26:2 (2019), 129–144; J. Appl. Industr. Math., 13:2 (2019), 317–326
Linking options:
https://www.mathnet.ru/eng/da927 https://www.mathnet.ru/eng/da/v26/i2/p129
|
|