Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2019, Volume 26, Issue 2, Pages 129–144
DOI: https://doi.org/10.33048/daio.2019.26.610
(Mi da927)
 

Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals

A. A. Sapozhenko, V. G. Sargsyan

Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
References:
Abstract: A collection $(A_1,\dots,A_{k+l})$ of subsets of an interval $[1,n]$ of naturals is called $(k,l)$-solution-free if there is no set $(a_1,\dots,$ $a_{k+l})\in A_1\times\dots\times A_{k+l}$ that is a solution to the equation $x_1+\dots+x_k=x_{k+1}+\dots+x_{k+l}$. We obtain the asymptotics for the logarithm of the number of sets $(k,l)$-free of solutions in an interval $[1,n]$ of naturals. Bibliogr. 17.
Keywords: set, group, coset, characteristic function, progression.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00593_а
Received: 20.02.2018
Revised: 10.12.2018
Accepted: 27.02.2019
English version:
Journal of Applied and Industrial Mathematics, 2019, Volume 13, Issue 2, Pages 317–326
DOI: https://doi.org/10.1134/S1990478919020133
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: A. A. Sapozhenko, V. G. Sargsyan, “Asymptotics for the logarithm of the number of $(k,l)$-solution-free collections in an interval of naturals”, Diskretn. Anal. Issled. Oper., 26:2 (2019), 129–144; J. Appl. Industr. Math., 13:2 (2019), 317–326
Citation in format AMSBIB
\Bibitem{SapSar19}
\by A.~A.~Sapozhenko, V.~G.~Sargsyan
\paper Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
\jour Diskretn. Anal. Issled. Oper.
\yr 2019
\vol 26
\issue 2
\pages 129--144
\mathnet{http://mi.mathnet.ru/da927}
\crossref{https://doi.org/10.33048/daio.2019.26.610}
\transl
\jour J. Appl. Industr. Math.
\yr 2019
\vol 13
\issue 2
\pages 317--326
\crossref{https://doi.org/10.1134/S1990478919020133}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067281834}
Linking options:
  • https://www.mathnet.ru/eng/da927
  • https://www.mathnet.ru/eng/da/v26/i2/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025