Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2018, Volume 25, Issue 4, Pages 131–148
DOI: https://doi.org/10.17377/daio.2018.25.618
(Mi da913)
 

Approximability of the problem of finding a vector subset with the longest sum

V. V. Shenmaier

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
References:
Abstract: We answer the question of existence of polynomial-time constant-factor approximation algorithms for the space of nonfixed dimension. We prove that, in Euclidean space the problem is solvable in polynomial time with accuracy $\sqrt\alpha$, where $\alpha=2/\pi$, and if $\mathrm P\neq\mathrm{NP}$ then there are no polynomial algorithms with better accuracy. It is shown that, in the case of the $\ell_p$ spaces, the problem is APX-complete if $p\in[1,2]$ and not approximable with constant accuracy if $\mathrm P\neq\mathrm{NP}$ and $p\in(2,\infty)$. Tab. 1, bibliogr. 21.
Keywords: sum vector, search for a vector subset, approximation algorithm, inapproximability bound.
Funding agency Grant number
Russian Science Foundation 16-11-10041
The author was supported by the Russian Science Foundation (project no. 16-11-10041).
Received: 11.04.2018
Revised: 13.07.2018
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 4, Pages 749–758
DOI: https://doi.org/10.1134/S1990478918040154
Bibliographic databases:
Document Type: Article
UDC: 519.16
Language: Russian
Citation: V. V. Shenmaier, “Approximability of the problem of finding a vector subset with the longest sum”, Diskretn. Anal. Issled. Oper., 25:4 (2018), 131–148; J. Appl. Industr. Math., 12:4 (2018), 749–758
Citation in format AMSBIB
\Bibitem{She18}
\by V.~V.~Shenmaier
\paper Approximability of the problem of finding a~vector subset with the longest sum
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 4
\pages 131--148
\mathnet{http://mi.mathnet.ru/da913}
\crossref{https://doi.org/10.17377/daio.2018.25.618}
\elib{https://elibrary.ru/item.asp?id=36449715}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 4
\pages 749--758
\crossref{https://doi.org/10.1134/S1990478918040154}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058077896}
Linking options:
  • https://www.mathnet.ru/eng/da913
  • https://www.mathnet.ru/eng/da/v25/i4/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025