|
Permutation binomial functions over finite fields
A. V. Miloserdov Novosibirsk State University, 1 Pirogov St., 630090 Novosibirsk, Russia
Abstract:
We consider binomial functions over a finite field of order $2^n$. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that $2^n-1$ is prime. Permutation binomial functions are constructed in the case when $4n$ is composite and found for $n\le8$. Tab. 2, bibliogr. 30.
Keywords:
vectorial Boolean function, binomial function, permutation, APN function.
Received: 20.02.2018 Revised: 04.06.2018
Citation:
A. V. Miloserdov, “Permutation binomial functions over finite fields”, Diskretn. Anal. Issled. Oper., 25:4 (2018), 59–80; J. Appl. Industr. Math., 12:4 (2018), 694–705
Linking options:
https://www.mathnet.ru/eng/da909 https://www.mathnet.ru/eng/da/v25/i4/p59
|
|