|
This article is cited in 4 scientific papers (total in 4 papers)
Minimizing a symmetric quasiconvex function on a two-dimensional lattice
S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, A. Yu. Chirkov Institute of Information Technology, Mathematics, and Mechanics,
Lobachevsky Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
Abstract:
We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle is at most thrice the lower bound. Bibliogr. 14.
Keywords:
quasiconvex function, oracle, integer lattice.
Received: 06.07.2017 Revised: 15.12.2017
Citation:
S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, A. Yu. Chirkov, “Minimizing a symmetric quasiconvex function on a two-dimensional lattice”, Diskretn. Anal. Issled. Oper., 25:3 (2018), 23–35; J. Appl. Industr. Math., 12:3 (2018), 587–594
Linking options:
https://www.mathnet.ru/eng/da901 https://www.mathnet.ru/eng/da/v25/i3/p23
|
Statistics & downloads: |
Abstract page: | 301 | Full-text PDF : | 93 | References: | 45 | First page: | 16 |
|