Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2018, Volume 25, Issue 2, Pages 124–143
DOI: https://doi.org/10.17377/daio.2018.25.584
(Mi da899)
 

Semigroup and metric characteristics of locally primitive matrices and graphs

V. M. Fomichevabc

a Financial University under the Government of the Russian Federation, 49 Leningradsky Ave., 125993 Moscow, Russia
b National Research Nuclear University MEPhI, 31 Kashirskoe Highway, 115409 Moscow, Russia
c Institute of Informatics Problems of FRC CSC RAS, 44-2 Vavilov St., 119333 Moscow, Russia
References:
Abstract: The notion of local primitivity for a quadratic $0,1$-matrix of size $n\times n$ is extended to any part of the matrix which need not be a rectangular submatrix. A similar generalization is carried out for any set $B$ of pairs of initial and final vertices of the paths in an $n$-vertex digraph, $B\subseteq\{(i,j)\colon1\le i,j \le n\}$. We establish the relationship between the local $B$-exponent of a matrix (digraph) and its characteristics such as the cyclic depth and period, the number of nonprimitive matrices, and the number of nonidempotent matrices in the multiplicative semigroup of all quadratic $0,1$-matrices of order $n$, etc. We obtain a criterion of $B$-primitivity and an upper bound for the $B$-exponent. We also introduce some new metric characteristics for a locally primitive digraph $\Gamma$: the $k,r$-exporadius, the $k,r$-expocenter, where $1\le k,r\le n$, and the matex which is defined as the matrix of order $n$ of all local exponents in the digraph $\Gamma$. An example of computation of the matex is given for the $n$-vertex Wielandt digraph. Using the introduced characteristics, we propose an idea for algorithmically constructing realizable $s$-boxes (elements of round functions of block ciphers) with a relatively wide range of sizes. Tab. 2, illustr. 1, bibliogr. 13.
Keywords: mixing matrix, primitive matrix, locally primitive matrix, exponent of a matrix, cyclic matrix semigroup.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00226
Received: 03.07.2017
Revised: 11.12.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 2, Pages 243–254
DOI: https://doi.org/10.1134/S1990478918020059
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. M. Fomichev, “Semigroup and metric characteristics of locally primitive matrices and graphs”, Diskretn. Anal. Issled. Oper., 25:2 (2018), 124–143; J. Appl. Industr. Math., 12:2 (2018), 243–254
Citation in format AMSBIB
\Bibitem{Fom18}
\by V.~M.~Fomichev
\paper Semigroup and metric characteristics of locally primitive matrices and graphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 2
\pages 124--143
\mathnet{http://mi.mathnet.ru/da899}
\crossref{https://doi.org/10.17377/daio.2018.25.584}
\elib{https://elibrary.ru/item.asp?id=34875800}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 2
\pages 243--254
\crossref{https://doi.org/10.1134/S1990478918020059}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047802977}
Linking options:
  • https://www.mathnet.ru/eng/da899
  • https://www.mathnet.ru/eng/da/v25/i2/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025