Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2017, Volume 24, Issue 2, Pages 5–17
DOI: https://doi.org/10.17377/daio.2017.24.545
(Mi da866)
 

This article is cited in 2 scientific papers (total in 2 papers)

On distance Gray codes

I. S. Bykova, A. L. Perezhoginab

a Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
Full-text PDF (295 kB) Citations (2)
References:
Abstract: A Gray code of size $n$ is a cyclic sequence of all binary words of length $n$ such that two consecutive words differ exactly in one position. We say that the Gray code is a distance code if the Hamming distance between words located at distance $k$ from each other is equal to $d$. The distance property generalizes the familiar concepts of a locally balanced Gray code. We prove that there are no distance Gray codes with $d=1$ for $k>1$. Some examples of constructing distance Gray codes are given. For one infinite series of parameters, it is proved that there are no distance Gray codes. Tab. 5, bibliogr. 9.
Keywords: $n$-cube, Hamiltonian cycle, Gray code, uniform Gray code, antipodal Gray code.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00507
Received: 19.05.2016
Revised: 16.09.2016
English version:
Journal of Applied and Industrial Mathematics, 2017, Volume 11, Issue 2, Pages 185–192
DOI: https://doi.org/10.1134/S1990478917020041
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: I. S. Bykov, A. L. Perezhogin, “On distance Gray codes”, Diskretn. Anal. Issled. Oper., 24:2 (2017), 5–17; J. Appl. Industr. Math., 11:2 (2017), 185–192
Citation in format AMSBIB
\Bibitem{BykPer17}
\by I.~S.~Bykov, A.~L.~Perezhogin
\paper On distance Gray codes
\jour Diskretn. Anal. Issled. Oper.
\yr 2017
\vol 24
\issue 2
\pages 5--17
\mathnet{http://mi.mathnet.ru/da866}
\crossref{https://doi.org/10.17377/daio.2017.24.545}
\elib{https://elibrary.ru/item.asp?id=29275511}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 2
\pages 185--192
\crossref{https://doi.org/10.1134/S1990478917020041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019664778}
Linking options:
  • https://www.mathnet.ru/eng/da866
  • https://www.mathnet.ru/eng/da/v24/i2/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :97
    References:51
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024