Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2017, Volume 24, Issue 1, Pages 21–30
DOI: https://doi.org/10.17377/daio.2017.24.542
(Mi da861)
 

This article is cited in 1 scientific paper (total in 1 paper)

On list incidentor (k,l)(k,l)-colorings

E. I. Vasilyevaa, A. V. Pyatkinba

a Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
b Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
Full-text PDF (287 kB) Citations (1)
References:
Abstract: A proper incidentor coloring is called a (k,l)(k,l)-coloring if the difference between the colors of the final and initial incidentors ranges between kk and ll. In the list variant, the extra restriction is added: The color of each incidentor must belong to the set of admissible colors of the arc. In order to make this restriction reasonable we assume that the set of admissible colors for each arc is an integer interval. The minimum length of the interval that guarantees the existence of a list incidentor (k,l)(k,l)-coloring is called a list incidentor (k,l)(k,l)-chromatic number. Some bounds for the list incidentor (k,l)(k,l)-chromatic number are proved for multigraphs of degree 22 and 44. Bibliogr. 13.
Keywords: list coloring, incidentor, (k,l)(k,l)-coloring.
Funding agency Grant number
Russian Science Foundation 16-11-10041
Received: 24.05.2016
Revised: 06.06.2016
English version:
Journal of Applied and Industrial Mathematics, 2017, Volume 11, Issue 1, Pages 125–129
DOI: https://doi.org/10.1134/S1990478917010148
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: E. I. Vasilyeva, A. V. Pyatkin, “On list incidentor (k,l)(k,l)-colorings”, Diskretn. Anal. Issled. Oper., 24:1 (2017), 21–30; J. Appl. Industr. Math., 11:1 (2017), 125–129
Citation in format AMSBIB
\Bibitem{VasPya17}
\by E.~I.~Vasilyeva, A.~V.~Pyatkin
\paper On list incidentor $(k,l)$-colorings
\jour Diskretn. Anal. Issled. Oper.
\yr 2017
\vol 24
\issue 1
\pages 21--30
\mathnet{http://mi.mathnet.ru/da861}
\crossref{https://doi.org/10.17377/daio.2017.24.542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3622063}
\elib{https://elibrary.ru/item.asp?id=28905203}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 1
\pages 125--129
\crossref{https://doi.org/10.1134/S1990478917010148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85013888606}
Linking options:
  • https://www.mathnet.ru/eng/da861
  • https://www.mathnet.ru/eng/da/v24/i1/p21
  • This publication is cited in the following 1 articles:
    1. A. V. Pyatkin, “O predpisannoi (k,l)(k,l)-raskraske intsidentorov multigrafov chetnoi stepeni pri nekotorykh znacheniyakh kk i ll”, Tr. IMM UrO RAN, 25, no. 2, 2019, 177–184  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025