Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2016, Volume 23, Issue 3, Pages 107–123
DOI: https://doi.org/10.17377/daio.2016.23.522
(Mi da855)
 

This article is cited in 1 scientific paper (total in 1 paper)

On full-rank perfect codes over finite fields

A. M. Romanov

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
Full-text PDF (299 kB) Citations (1)
References:
Abstract: We propose a construction of full-rank $q$-ary $1$-perfect codes over finite fields. This is a generalization of the construction of full-rank binary $1$-perfect codes by Etzion and Vardy (1994). The properties of the $i$-components of q-ary Hamming codes are investigated and the construction of full-rank $q$-ary $1$-perfect codes is based on these properties. The switching construction of $1$-perfect codes is generalized for the $q$-ary case. We propose a generalization of the notion of $i$-component of a $1$-perfect code and introduce the concept of an $(i,\sigma)$-component of $q$-ary $1$-perfect codes. We also present a generalization of the Lindström–Schönheim construction of $q$-ary $1$-perfect codes and provide a lower bound for the number of pairwise distinct $q$-ary $1$-perfect codes of length $n$. Bibliogr. 16.
Keywords: Hamming code, nonlinear perfect code, full-rank code, $i$-component.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00507
Received: 29.12.2015
Revised: 17.03.2016
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 3, Pages 444–452
DOI: https://doi.org/10.1134/S1990478916030157
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: A. M. Romanov, “On full-rank perfect codes over finite fields”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 107–123; J. Appl. Industr. Math., 10:3 (2016), 444–452
Citation in format AMSBIB
\Bibitem{Rom16}
\by A.~M.~Romanov
\paper On full-rank perfect codes over finite fields
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 3
\pages 107--123
\mathnet{http://mi.mathnet.ru/da855}
\crossref{https://doi.org/10.17377/daio.2016.23.522}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3563719}
\elib{https://elibrary.ru/item.asp?id=26681833}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 444--452
\crossref{https://doi.org/10.1134/S1990478916030157}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983527195}
Linking options:
  • https://www.mathnet.ru/eng/da855
  • https://www.mathnet.ru/eng/da/v23/i3/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :58
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024