Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2016, Volume 23, Issue 3, Pages 61–80
DOI: https://doi.org/10.17377/daio.2016.23.515
(Mi da852)
 

Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes

A. N. Maksimenko

Yaroslavl State University, 14 Sovetskaya St., 150000 Yaroslavl, Russia
References:
Abstract: This paper deals with the following question: Can combinatorial properties of polytopes help in finding an estimate for the complexity of the corresponding optimization problem? Sometimes, these key characteristics of complexity were the number of hyperfaces of the polytope, diameter and clique number of the graph of the polytope, the rectangle covering number of the vertex-facet incidence matrix, and some other characteristics. In this paper, we provide several families of polytopes for which the above-mentioned characteristics differ significantly from the real computational complexity of the corresponding optimization problems. In particular, we give two examples of discrete optimization problem whose polytopes are combinatorially equivalent and they have the same lengths of the binary representation of the coordinates of the polytope vertices. Nevertheless, the first problem is solvable in polynomial time, while the second problem has exponential complexity. Ill. 1, bibliogr. 22.
Keywords: NP-complex problem, vertex-facet incidence matrix, combinatorial equivalence, graph of a polytope, graph clique number, extended formulation, cyclic polytope.
Received: 13.10.2015
Revised: 19.04.2016
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 3, Pages 370–379
DOI: https://doi.org/10.1134/S1990478916030078
Bibliographic databases:
Document Type: Article
UDC: 519.854
Language: Russian
Citation: A. N. Maksimenko, “Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes”, Diskretn. Anal. Issled. Oper., 23:3 (2016), 61–80; J. Appl. Industr. Math., 10:3 (2016), 370–379
Citation in format AMSBIB
\Bibitem{Mak16}
\by A.~N.~Maksimenko
\paper Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 3
\pages 61--80
\mathnet{http://mi.mathnet.ru/da852}
\crossref{https://doi.org/10.17377/daio.2016.23.515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3563716}
\elib{https://elibrary.ru/item.asp?id=26681830}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 370--379
\crossref{https://doi.org/10.1134/S1990478916030078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983527686}
Linking options:
  • https://www.mathnet.ru/eng/da852
  • https://www.mathnet.ru/eng/da/v23/i3/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :112
    References:37
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024