Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2016, Volume 23, Issue 2, Pages 41–62
DOI: https://doi.org/10.17377/daio.2016.23.524
(Mi da844)
 

This article is cited in 2 scientific papers (total in 2 papers)

On complexity of optimal recombination for flowshop scheduling problems

Yu. V. Kovalenko

Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia
Full-text PDF (341 kB) Citations (2)
References:
Abstract: Under study is the complexity of optimal recombination for various flowshop scheduling problems with the makespan criterion and the criterion of maximum lateness. The problems are proved to be NP-hard, and a solution algorithm is proposed. In the case of a flowshop problem on permutations, the algorithm is shown to have polynomial complexity for “almost all” pairs of parent solutions as the number of jobs tends to infinity. Ill. 4, bibliogr. 26.
Keywords: flowshop problem, permutation, genetic algorithm, optimal recombination.
Funding agency Grant number
Russian Science Foundation 15-11-10009
Received: 21.01.2016
Revised: 11.02.2016
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 2, Pages 220–231
DOI: https://doi.org/10.1134/S1990478916020071
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: Yu. V. Kovalenko, “On complexity of optimal recombination for flowshop scheduling problems”, Diskretn. Anal. Issled. Oper., 23:2 (2016), 41–62; J. Appl. Industr. Math., 10:2 (2016), 220–231
Citation in format AMSBIB
\Bibitem{Kov16}
\by Yu.~V.~Kovalenko
\paper On complexity of optimal recombination for flowshop scheduling problems
\jour Diskretn. Anal. Issled. Oper.
\yr 2016
\vol 23
\issue 2
\pages 41--62
\mathnet{http://mi.mathnet.ru/da844}
\crossref{https://doi.org/10.17377/daio.2016.23.524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3557593}
\elib{https://elibrary.ru/item.asp?id=26129766}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 220--231
\crossref{https://doi.org/10.1134/S1990478916020071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971330257}
Linking options:
  • https://www.mathnet.ru/eng/da844
  • https://www.mathnet.ru/eng/da/v23/i2/p41
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :102
    References:33
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024