|
This article is cited in 7 scientific papers (total in 7 papers)
On locally balanced Gray codes
I. S. Bykov Sobolev Institute of Mathematics, 4 Koptyug Ave., 630090 Novosibirsk, Russia
Abstract:
We consider locally balanced Gray codes. We say that a Gray code is locally balanced if each “short” subword of transition sequence contains all letters of the set $\{1,2,\dots,n\}$. The minimal length of such subwords is called the window width of the code. We show that for each $n\ge3$ there exists a Gray code with window width not greater than $n+3\lfloor\log n\rfloor$. Tab. 3, bibliogr. 10.
Keywords:
Gray code, Hamilton cycle, $n$-cube, window width code.
Received: 09.06.2015 Revised: 17.08.2015
Citation:
I. S. Bykov, “On locally balanced Gray codes”, Diskretn. Anal. Issled. Oper., 23:1 (2016), 51–64; J. Appl. Industr. Math., 10:1 (2016), 78–85
Linking options:
https://www.mathnet.ru/eng/da838 https://www.mathnet.ru/eng/da/v23/i1/p51
|
Statistics & downloads: |
Abstract page: | 367 | Full-text PDF : | 111 | References: | 78 | First page: | 43 |
|