Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 5, Pages 67–75 (Mi da794)  

This article is cited in 1 scientific paper (total in 1 paper)

On algebraic immunity of Dillon's bent functions

S. Yu. Filyuzin

Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Full-text PDF (248 kB) Citations (1)
References:
Abstract: It is known that the algebraic immunity of a Boolean function in $n$ variables doesn't exceed $\lceil n/2\rceil$. In this paper, it is proved that $\lceil n/4\rceil+1$ is an upper bound on the algebraic immunity of Dillon's bent functions constructed with linear functions. Bibliogr. 13.
Keywords: Boolean function, nonlinearity, bent function, algebraic immunity.
Received: 20.08.2013
Revised: 28.03.2014
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 4, Pages 528–533
DOI: https://doi.org/10.1134/S1990478914040097
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: S. Yu. Filyuzin, “On algebraic immunity of Dillon's bent functions”, Diskretn. Anal. Issled. Oper., 21:5 (2014), 67–75; J. Appl. Industr. Math., 8:4 (2014), 528–533
Citation in format AMSBIB
\Bibitem{Fil14}
\by S.~Yu.~Filyuzin
\paper On algebraic immunity of Dillon's bent functions
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 5
\pages 67--75
\mathnet{http://mi.mathnet.ru/da794}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3328838}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 4
\pages 528--533
\crossref{https://doi.org/10.1134/S1990478914040097}
Linking options:
  • https://www.mathnet.ru/eng/da794
  • https://www.mathnet.ru/eng/da/v21/i5/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :128
    References:61
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024