Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 5, Pages 3–16 (Mi da789)  

This article is cited in 1 scientific paper (total in 1 paper)

$3$-regular subgraphs and $(3,1)$-colorings of $4$-regular pseudographs

A. Yu. Bernshtein

Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Full-text PDF (534 kB) Citations (1)
References:
Abstract: Let $G$ be a $4$-regular pseudograph. A $(3,1)$-coloring of $G$ is an edge coloring of $G$, such that every vertex of $G$ is incident exactly with three edges of one color and with one edge of another color. The properties of $(3,1)$-colorings are closely related to the existence of $3$-regular subgraphs in $G$. We prove that every connected $4$-regular pseudograph which contains a $3$-regular subgraph has a $(3,1)$-coloring. Moreover, every $4$-regular pseudograph without parallel edges (but, maybe, with loops) admits a $(3,1)$-coloring. This result serves as an indirect confirmation of the assumption (unproved) that every such graph contains a $3$-regular subgraph. We also analyze the problem of determining the minimal number of colors needed for a $(3,1)$-coloring of a given graph. Finally, we prove that the existence of a $(3,1)$-coloring which satisfies some additional properties (an ordered $(3,1)$-coloring) is equivalent to the existence of a $3$-regular subgraph. Ill. 8, bibliogr. 20.
Keywords: $4$-regular graph, edge coloring.
Received: 16.12.2013
Revised: 21.02.2014
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 4, Pages 458–466
DOI: https://doi.org/10.1134/S1990478914040024
Bibliographic databases:
Document Type: Article
UDC: 519.174
Language: Russian
Citation: A. Yu. Bernshtein, “$3$-regular subgraphs and $(3,1)$-colorings of $4$-regular pseudographs”, Diskretn. Anal. Issled. Oper., 21:5 (2014), 3–16; J. Appl. Industr. Math., 8:4 (2014), 458–466
Citation in format AMSBIB
\Bibitem{Ber14}
\by A.~Yu.~Bernshtein
\paper $3$-regular subgraphs and $(3,1)$-colorings of $4$-regular pseudographs
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 5
\pages 3--16
\mathnet{http://mi.mathnet.ru/da789}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3328833}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 4
\pages 458--466
\crossref{https://doi.org/10.1134/S1990478914040024}
Linking options:
  • https://www.mathnet.ru/eng/da789
  • https://www.mathnet.ru/eng/da/v21/i5/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024