|
Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 4, Pages 54–61
(Mi da785)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Affine $3$-nonsystematic codes
S. A. Malyugin S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
Abstract:
A perfect binary code $C$ of length $n=2^k-1$ is called affine $3$-systematic if in the space $\{0,1\}^n$ there exists a $3$-dimensional subspace $L$ such that the intersection of any of its cosets $L+u$ with the code $C$ is either empty or a singleton. Otherwise, the code $C$ is called affine $3$-nonsystematic. We construct affine $3$-nonsystematic codes of length $n=2^k-1$, $k\geq4$. Bibliogr. 11.
Keywords:
perfect code, Hamming code, nonsystematic code, affine nonsystematic code, affine $3$-nonsystematic code, component.
Received: 23.12.2013 Revised: 17.01.2014
Citation:
S. A. Malyugin, “Affine $3$-nonsystematic codes”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 54–61; J. Appl. Industr. Math., 8:4 (2014), 552–556
Linking options:
https://www.mathnet.ru/eng/da785 https://www.mathnet.ru/eng/da/v21/i4/p54
|
|