|
Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 2, Pages 59–75
(Mi da767)
|
|
|
|
The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$
Yu. V. Merekin S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
Abstract:
The exact value of the Shannon function for fast calculating the Arnold complexity of length $2^n$ binary words is obtained for $n=m^2$, $n=m^2+m$, and $n=m^2+2m$, $m\geq2$. Thus the exact value of the Shannon function is determined for an arbitrary $n$. Bibliogr. 6.
Keywords:
binary word, complexity of word, Arnold complexity, Shannon function.
Received: 11.02.2013 Revised: 25.12.2013
Citation:
Yu. V. Merekin, “The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$”, Diskretn. Anal. Issled. Oper., 21:2 (2014), 59–75; J. Appl. Industr. Math., 9:1 (2015), 98–109
Linking options:
https://www.mathnet.ru/eng/da767 https://www.mathnet.ru/eng/da/v21/i2/p59
|
Statistics & downloads: |
Abstract page: | 231 | Full-text PDF : | 69 | References: | 45 | First page: | 10 |
|