Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 2, Pages 59–75 (Mi da767)  

The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$

Yu. V. Merekin

S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
References:
Abstract: The exact value of the Shannon function for fast calculating the Arnold complexity of length $2^n$ binary words is obtained for $n=m^2$, $n=m^2+m$, and $n=m^2+2m$, $m\geq2$. Thus the exact value of the Shannon function is determined for an arbitrary $n$. Bibliogr. 6.
Keywords: binary word, complexity of word, Arnold complexity, Shannon function.
Received: 11.02.2013
Revised: 25.12.2013
English version:
Journal of Applied and Industrial Mathematics, 2015, Volume 9, Issue 1, Pages 98–109
DOI: https://doi.org/10.1134/S1990478915010111
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: Yu. V. Merekin, “The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$”, Diskretn. Anal. Issled. Oper., 21:2 (2014), 59–75; J. Appl. Industr. Math., 9:1 (2015), 98–109
Citation in format AMSBIB
\Bibitem{Mer14}
\by Yu.~V.~Merekin
\paper The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 2
\pages 59--75
\mathnet{http://mi.mathnet.ru/da767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241788}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 1
\pages 98--109
\crossref{https://doi.org/10.1134/S1990478915010111}
Linking options:
  • https://www.mathnet.ru/eng/da767
  • https://www.mathnet.ru/eng/da/v21/i2/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :67
    References:42
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024