Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 6, Pages 30–39 (Mi da751)  

This article is cited in 1 scientific paper (total in 1 paper)

On factorial subclasses of $K_{1,3}$-free graphs

V. A. Zamaraevab

a University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhni Novgorod, Russia
b National Research University Higher School of Economics, 136 Rodionov St., 603093 Nizhni Novgorod, Russia
Full-text PDF (257 kB) Citations (1)
References:
Abstract: For a set of labeled graphs $X$, let $X_n$ be the set of $n$-vertex graphs from $X$. A hereditary class $X$ is called at most factorial if there exist positive constants $c$ and $n_0$ such that $|X_n|\leq n^{cn}$ for all $n>n_0$. Lozin's conjecture states that a hereditary class $X$ is at most factorial if and only if each of the following three classes is at most factorial: $X\cap B$, $X\cap\widetilde B$ and $X\cap S$, where $B,\widetilde B$ and $S$ are the classes of bipartite, co-bipartite and split graphs respectively. We prove this conjecture for subclasses of $K_{1,3}$-free graphs defined by two forbidden subgraphs. Bibliogr. 10.
Keywords: hereditary class of graphs, factorial class.
Received: 23.10.2012
Revised: 09.03.2013
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. A. Zamaraev, “On factorial subclasses of $K_{1,3}$-free graphs”, Diskretn. Anal. Issled. Oper., 20:6 (2013), 30–39
Citation in format AMSBIB
\Bibitem{Zam13}
\by V.~A.~Zamaraev
\paper On factorial subclasses of $K_{1,3}$-free graphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2013
\vol 20
\issue 6
\pages 30--39
\mathnet{http://mi.mathnet.ru/da751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3185262}
Linking options:
  • https://www.mathnet.ru/eng/da751
  • https://www.mathnet.ru/eng/da/v20/i6/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024