|
Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 5, Pages 31–44
(Mi da744)
|
|
|
|
On extremely transitive extended perfect codes
G. K. Guskova, F. I. Solov'evaab a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Abstract:
It is constructed an infinite set of extended perfect codes of length $n=2^k$, $k\ge4$ that are extremely transitive, which means that all perfect codes obtained from these transitive extended codes by puncturing any coordinate are nontransitive. The classification of such codes of length 16 is done. Ill. 2, tab. 2, bibliogr. 14.
Keywords:
extended perfect binary code, transitive code, Steiner triple system, Pasch configuration.
Received: 27.08.2012 Revised: 28.05.2013
Citation:
G. K. Guskov, F. I. Solov'eva, “On extremely transitive extended perfect codes”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 31–44; J. Appl. Industr. Math., 8:1 (2014), 53–62
Linking options:
https://www.mathnet.ru/eng/da744 https://www.mathnet.ru/eng/da/v20/i5/p31
|
Statistics & downloads: |
Abstract page: | 202 | Full-text PDF : | 77 | References: | 49 | First page: | 4 |
|