Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 5, Pages 13–30 (Mi da743)  

This article is cited in 4 scientific papers (total in 4 papers)

On $m$-capacitated peripatetic salesman problem

E. Kh. Gimadiab, A. M. Istomina, I. A. Rykovab

a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Full-text PDF (461 kB) Citations (4)
References:
Abstract: We consider a particular case of the problem of finding $m$ Hamiltonian cycles with capacity restrictions on edges usage ($m$-Capacitated Peripatetic Salesman Problem, $m$-$\mathrm{CPSP}$): the $2$-CPSP on minimum and maximum with edge weights from an integer segment $\{1,q\}$. The edges capacities are independent identically distributed random variables which assume $2$ with probability $p$ and $1$ with probability $1-p$. Polynomial algorithms for $2$-$\mathrm{CPSP_{min}}$ and $2$-$\mathrm{CPSP_{max}}$ with guarantee approximation ratio in average for all possible inputs are presented. In the case when edge weights are $1$ and $2$, the presented algorithms have approximation ratio $(19-5p)/12$ and $(25+7p)/36$ for the $2$-$\mathrm{CPSP_{min}}$ and the $2$-$\mathrm{CPSP_{max}}$ correspondingly. Ill. 17, bibliogr. 20.
Keywords: travelling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, edge-disjoint Hamiltonian cycle, guarantee approximation ratio.
Received: 27.12.2012
Revised: 10.06.2013
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 1, Pages 40–52
DOI: https://doi.org/10.1134/S1990478914010050
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “On $m$-capacitated peripatetic salesman problem”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 13–30; J. Appl. Industr. Math., 8:1 (2014), 40–52
Citation in format AMSBIB
\Bibitem{GimIstRyk13}
\by E.~Kh.~Gimadi, A.~M.~Istomin, I.~A.~Rykov
\paper On $m$-capacitated peripatetic salesman problem
\jour Diskretn. Anal. Issled. Oper.
\yr 2013
\vol 20
\issue 5
\pages 13--30
\mathnet{http://mi.mathnet.ru/da743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184441}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 1
\pages 40--52
\crossref{https://doi.org/10.1134/S1990478914010050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894299351}
Linking options:
  • https://www.mathnet.ru/eng/da743
  • https://www.mathnet.ru/eng/da/v20/i5/p13
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:563
    Full-text PDF :233
    References:63
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024