|
Diskretnyi Analiz i Issledovanie Operatsii, 2013, Volume 20, Issue 5, Pages 13–30
(Mi da743)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On $m$-capacitated peripatetic salesman problem
E. Kh. Gimadiab, A. M. Istomina, I. A. Rykovab a Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
Abstract:
We consider a particular case of the problem of finding $m$ Hamiltonian cycles with capacity restrictions on edges usage ($m$-Capacitated Peripatetic Salesman Problem, $m$-$\mathrm{CPSP}$): the $2$-CPSP on minimum and maximum with edge weights from an integer segment $\{1,q\}$. The edges capacities are independent identically distributed random variables which assume $2$ with probability $p$ and $1$ with probability $1-p$. Polynomial algorithms for $2$-$\mathrm{CPSP_{min}}$ and $2$-$\mathrm{CPSP_{max}}$ with guarantee approximation ratio in average for all possible inputs are presented. In the case when edge weights are $1$ and $2$, the presented algorithms have approximation ratio $(19-5p)/12$ and $(25+7p)/36$ for the $2$-$\mathrm{CPSP_{min}}$ and the $2$-$\mathrm{CPSP_{max}}$ correspondingly. Ill. 17, bibliogr. 20.
Keywords:
travelling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, edge-disjoint Hamiltonian cycle, guarantee approximation ratio.
Received: 27.12.2012 Revised: 10.06.2013
Citation:
E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, “On $m$-capacitated peripatetic salesman problem”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 13–30; J. Appl. Industr. Math., 8:1 (2014), 40–52
Linking options:
https://www.mathnet.ru/eng/da743 https://www.mathnet.ru/eng/da/v20/i5/p13
|
Statistics & downloads: |
Abstract page: | 563 | Full-text PDF : | 233 | References: | 63 | First page: | 9 |
|